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Background:Miscellaneous features from various domains are accepted to be associatedwith the risk of falling in
the elderly. However, only few studies have focused on establishing clinical tools to predict the risk of the first fall
onset. Amodel thatwould objectively and easily evaluate the risk of a first fall occurrence in the coming year still
needs to be built.
Objectives:Wedeveloped amodel based onmachine learning, whichmight help themedical staff predict the risk
of the first fall onset in a one-year time window.
Participants/measurements: Overall, 426 older adults who had never fallen were assessed on 73 variables, com-
prising medical, social and physical outcomes, at t0. Each fall was recorded at a prospective 1-year follow-up. A
decision tree was built on a randomly selected training subset of the cohort (80% of the full-set) and validated
on an independent test set.
Results: 82 participants experienced a first fall during the follow-up. Themachine learning process independently
extracted 13 powerful parameters and built a model showing 89% of accuracy for the overall classification with
83%–82% of true positive fallers and 96%–61% of true negative non-fallers (training set vs. independent test set).
Conclusion: This study provides a pilot tool that could easily help the gerontologists refine the evaluation of the
risk of the first fall onset and prioritize the effective prevention strategies. The study also offers a transparent
framework for future, related investigation that would validate the clinical relevance of the established model
by independently testing its accuracy on larger cohort.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Approximately 30% of seniors aged 65 and older experience one or
more falls annually (Tinetti et al., 1988). Hence, in view of the dramatic
consequences of falls in older adults in various domains, including
impaired mobility (Dai et al., 2012), quality of life (Davis et al., 2015),
or the overall economic cost (Davis et al., 2010), the capacity to predict
a future fall constitutes a clinical target, which continually needs to be
refined. Even if numerous parameters associated with the risk of falling
have already been identified (e.g., (Bloch et al., 2013; Gillespie et al.,
2012)), the medical community still lacks an easy-to-use tool that
could accurately predict the risk of the first fall onset. Indeed, falls in
the elderly result from intricate interactions between extrinsic and
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intrinsic risk factors related to iatrogenic component, medical histories,
or physical characteristics (for a detailed review (Bloch et al., 2013)).
Many studies reported models that can predict the risk of falling in
the elderly (Ivziku et al., 2011; Kojima et al., 2015; Schoene et al.,
2013; Verghese et al., 2009). However, most of them were based on
large cohorts of heterogeneous elderly population without specifying
whether participants had ever fallen before their enrolment in the
study (for notable exceptions see Beauchet et al. (2008), Mignardot
et al. (2014)).

Up to now, no studies have identified a subset of relevant parame-
ters and the way in which they should interact (hierarchical sorting)
to develop a powerful model. Yet, many studies have proposed fall
prediction models using risk-scoring system (Stalenhoef et al., 2002;
Whitney et al., 2012; Yoo et al., 2015). However, the statistical properties
of a prediction model of falls, such as the trade-off between sensitivity
and specificity, determine how the prediction model can be effectively
used. Hence, the false positive and false negative rates in many models
question their clinical application. Finally, as another pitfall, the lack of
control associated with independent testing sets is of overriding impor-
tance in health care practice.
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We seek to alleviate these issues by performing data mining on a da-
tabase that containsmost of relevant parameters associatedwith the risk
of fall (neurologic, cardiovascular, cognitive, anthropometric, motor
function, and socio-educational assessments). We built a predictive
model for the occurrence of a first fall from a cohort comprising 426
older adults who were followed prospectively over one year. The ma-
chine learning technique we used has generated a decision tree with a
set of simple classification rules. We were also concerned about the va-
lidity of these extracted rules; thus, we performed a blind control on an
independent set to evidence its clinical relevance.
2. Methods

2.1. Participants

A cohort of 426 older adults (mean age 69.5 ± 2.6 years; 61.5%
women) who never experienced a fall experience were recruited for a
prospective observational multicenter study designed to identify the
risk factors for the first fall in elderly community-dwellers. The Local
Ethical Committee of the Region of Pays de la Loire (France) approved
this study (ref: no. 2004/05). The data collection procedure has been
described elsewhere in detail (Mignardot et al., 2014). In summary, eli-
gibility criteria were age between 66 and 75 years, living at home, never
fallen, and an ability to walk without assistance for at least 30 s. For the
present analysis, exclusion criteria were refusal to give consent or lack
capacity to give consent or if the participant was hospitalized at the
time of screening. Participants were included after having given their
written informed consent for research.
2.2. Screening of falls and prospective follow-up

Before the enrolment in the study, the faller status in older partici-
pants was evaluated during the first information meeting, where they
were questioned about their past. A geriatric doctor explained the
WHO definition of a fall (WHO, 2007) to the participants using case
examples. Subjects were excluded if they already experienced a fall. Of
note, the non-faller status of healthy adults was double-checked at the
inclusion visit. During this same visit, all baseline characteristics
described in the following “data collection” section were collected. The
research medical staff designed a standard phone call that aimed to
prospectively monitor any fall onset (date, circumstances, causes and
consequences) and/or major events each month for one year. Trained
interviewers performed the phone calls, similar to the procedure used
in the literature (Stalenhoef et al., 2002). At the end of the follow-up
period, a committee of geriatric doctors analyzed the circumstances of
each fall recorded during the prospective follow-up in order to verify
and, if appropriate, validate that the fall occurred during usual living
conditions and in line with the WHO definition-related criteria of a fall
(WHO, 2007). The expert committee rejected 5% of collected falls.
During the 12-month follow-up period, 82 subjects (19.2%) reported
falling at least once. Note also that the committee kept blind for the
results as the geriatric M.D. met, and none of them has been involved
in the construction of the decision tree.
2.3. Data collection

Medical staff screened each participant at t0 for various baseline
characteristics that have been found to be predictors of falls: gender,
taking medications, impaired cognition (e.g., Frontal Assessment
Battery “FAB”), postural sway during upright quiet standing with eyes
open and eyes closed (51.2 s.), the body composition associated with
anthropometrical measures, the functional autonomy and physical
lifestyle, and various systemic domains, such as vision, hearing, cardio-
vascular, sensory features and executive functions (see Table 1).
2.4. Decision tree learning procedure

The final database comprised 426 subjects providing 31,098 values
and 73 variables divided into 50 unordered categorical and 23 continu-
ous variables describing the status of each older adult (see Table 1).
Based on those input variables, the outcome variable was the occur-
rence of the first fall in the next 12 months. Considering the status of
each subject and categorical nature of the data, a decision tree revealed
to be the most adequate supervised machine learning algorithm to
develop a direct and easy-to-use tool (for details about decision trees
definition and implementation see Kotsiantis (2007)). A classification
tree is created by splitting the initial training set (called the root node)
into two subsets based on themost discriminative variable. This process
is then recursively repeated on the new subsets until the splitting no
longer brings value to the prediction. The final subsets are called leaves
while the intermediate ones are named internal nodes.

2.4.1. Random attribution of the data for the training or testing sets
Among the 426 subjects, 82 experienced the first fall onset within

12 months and formed the faller group (F group). Overall, 344 subjects
have not shown any sign of fall onset, and they were considered as con-
trol non-faller subjects (NF group). To respect the assumption of sam-
ples equality in both groups (Breiman et al., 1984), we have randomly
and blindly selected 25% of the subjects from the NF group (86 subjects)
to balance the number of subjects in both groups (F and NF groups).
Then, the reduced database was split into training and test sets. Overall,
80% of the subjects from F group were blindly assigned to the training
set (65 subjects); the remaining subjects were assigned to the test set
(17 subjects). Identically, 80% of the subjects from the NF group were
assigned to the training set (68 subjects)while the otherswere assigned
to the test set (18 subjects).

2.4.2. Model accuracy assessment
The decision tree was implemented in Matlab® using the Statistics

toolbox with the classregtree function to perform classification
(Breiman et al., 1984). The parameters of this function have been adjust-
ed to obtain the highest accuracy (subsets must have at least 10 training
samples to be split, the Gini's diversity index (Raileanu and Stoffel,
2004) was used as the split criterion, all variables were assigned the
same weight, and prior probabilities belonging to one class were equal).
Subjects with missing values were retained, as long as the algorithm
was able to handle them. The optimal tree, as determined by the algo-
rithmon the training set, was then tested on the test set. Confusionmatri-
ces and the area under the receiver operating characteristics curves (AUC)
on both sets were used to determine the accuracy of the model.

3. Results

All statistical results are summarized in Table 1, with mean ± stan-
dard deviations representing baseline continuous variables and number
of subjects in percentages representing categorical variables. No signifi-
cant differences in baseline characteristics were found between F and
NF groups, except for gender. Overall, no significant differences emerged
between groups, regardless of the baseline characteristics (postural
balance, body composition and anthropometry, physical lifestyle and
autonomy, hearing, vision, cardiovascular, orthopedy, neurology, execu-
tive functions).

The decision tree was built on the training set (comprising 9709
values), and 2555 values have been used for the independent evaluation
of model accuracy. Fig. 1A displays the final decision tree with its 15
internal nodes and 17 leaves. For each internal node, the split criterion
is indicated. The tree demonstrates that the two first levels of splitting
are related to nutrition and anthropometry. The root of the tree starts
by the mini nutritional assessment, followed by the body mass index
(BMI) and the lean body mass at the second level. The field of sensory
disabilities, including the ankle hypoesthesia, the visual acuity, and the



Table 1
Baseline characteristics of the studied sample (n = 426) according to their faller status (faller vs. non-faller). p b 0.05: *.

Fallers (n = 82) Non-fallers (n = 344) Total (n = 426)

Baseline characteristics
Female gender, n (%)* 41 (50.0) 224 (65.1) 265 (62.2)
Age (years), mean ± SD a (1, 2, 3) 69.5 ± 2.8 69.5 ± 2.6 69.5 ± 2.6
Taking medications (yes), n (%) 72 (87.8) 267 (77.6) 339 (79.6)
Family status (in couple vs. single), n (%) 65 (79.3) 283 (82.3) 348 (81.7)

Postural balance
Eyes open
Area (95% confidence ellipse) (mm2) 167 ± 135.6 152 ± 106 154.8 ± 112.3
COP mediolateral length (mm) 240.6 ± 85.2 241 ± 92.3 240.9 ± 90.9
COP antero-posterior length (mm) 270.3 ± 93.3 274.2 ± 103 273.4 ± 101.1

Eyes closed
Area (95% confidence ellipse) (mm2) 285.3 ± 296.1 247.4 ± 176.2 254.7 ± 204.9
COP mediolateral length (mm) 344.5 ± 160.5 347.3 ± 158.3 346.8 ± 158.6
COP antero-posterior length (mm) 448.7 ± 210.3 454.3 ± 218 453.2 ± 216.3

Body composition and anthropometry
Body mass index (kg/m2), mean ± SD 26.4 ± 4 26 ± 3.7 26.1 ± 3.7
Weight (kg), mean ± SD 70.2 ± 12 70.9 ± 12.4 70.7 ± 12.3
Height (cm), mean ± SD 162.9 ± 9.5 164.6 ± 8.6 164.3 ± 8.8
Right brachial circumference, mean ± SD 28.9 ± 3.3 29 ± 3.3 29 ± 3.3
Calf brachial circumference, mean ± SD 36.1 ± 3.3 35.9 ± 3.1 36 ± 3.1
Mini-nutritional assessment score (/30 points), mean ± SD 27.5 ± 1.7 28 ± 4.2 27.9 ± 3.9
Fat mass (kg), mean ± SD 21.4 ± 7 20.3 ± 6.6 20.5 ± 6.7
Lean mass (kg), mean ± SD 48.4 ± 9.7 50.4 ± 9.7 50 ± 9.7
Total body water (kg), mean ± SD 35.7 ± 6.9 37.2 ± 7.1 36.9 ± 7.1

Physical lifestyle and autonomy
Index of independence in activities of daily living (Katz index/6), mean ± SD 5.8 ± 0.4 5.9 ± 0.3 5.9 ± 0.3
Daily life activities (/27 = without aid), mean ± SD 26.6 ± 1 26.7 ± 1.1 26.7 ± 1.1
Physical activity (walk) N = 30 min/day, n (%) 64 (78.0) 280 (81.4) 344 (80.8)
One leg standing N5 s (yes), n (%) 75 (91.5) 323 (93.9) 398 (93.4)

Vision
Visual Object and Space Perception Battery, (/10 points), mean ± SD 8.8 ± 1.5 8.6 ± 1.8 8.7 ± 1.7
Distance visual acuity (right eye) (/10), mean ± SD 8.2 ± 3.2 8.3 ± 2.5 8.3 ± 2.6
Distance visual acuity (left eye) (/10), mean ± SD 8.1 ± 3 8.2 ± 2.5 8.2 ± 2.6
Near visual acuity (right eye) (/10), mean ± SD 23.6 ± 36.6 20.1 ± 17.8 20.8 ± 22.6
Near visual acuity (left eye) (/10), mean ± SD 17.5 ± 7.3 18.4 ± 9 18.2 ± 8.7
Vision with glasses (yes), n (%) 81 (98.8) 343 (99.7) 424 (99.5)
Glasses (bifocal/progressive lenses), n (%) 70 (85.4) 303 (88.1) 373 (87.6)
Cataract (yes), n (%) 18 (22.0) 86 (25.0) 104 (24.4)

Hearing
Hearing surgery (yes), n (%) 2 (2.4) 16 (4.7) 18 (4.2)
Hearing aid (right ear), n (%) 3 (3.7) 10 (2.9) 13 (3.1)
Hearing aid (left ear), n (%) 4 (4.9) 12 (3.5) 16 (3.8)
Hearing deficiency (N30 dB) (yes), n (%) 69 (84.1) 275 (79.9) 344 (80.8)
Presbycusis (yes), n (%) 68 (82.9) 274 (79.7) 342 (80.3)

Cardiovascular
Normal electrocardiogram (yes), n (%) 69 (84.1) 289 (84.0) 358 (84.0)
Systolic blood pressures (supine/standing ratio), mean ± SD 0.99 ± 0.09 0.9 ± 0.08 0.9 ± 0.08

Orthopedy
Orthopedic surgery of lower limbs, n (%) 15 (18.3) 55 (16.0) 70 (16.4)
Spinal surgery, n (%) 8 (9.8) 14 (4.1) 22 (5.2)
Paralyzing sciatica, n (%) 5 (6.1) 15 (4.4) 20 (4.7)
Herniated disc, n (%) 10 (12.2) 35 (10.2) 45 (10.6)
Coxarthrosis, n (%) 6 (7.3) 35 (10.2) 41 (9.6)
Knee osteoarthritis, n (%) 10 (12.2) 38 (11.0) 48 (11.3)
Limited hip range of motion, n (%) 8 (9.8) 21 (6.1) 29 (6.8)
Limited knee range of motion, n (%) 1 (1.2) 19 (5.5) 20 (4.7)
Frozen ankles, n (%) 3 (3.7) 2 (0.6) 5 (1.2)
Orthopedic shoes, n (%) 3 (3.7) 5 (1.5) 8 (1.9)
Feet pathology, n (%) 30 (36.6) 108 (31.4) 138 (32.4)

Neurology
Sensory features
Stroke, n (%) 3 (3.7) 8 (2.3) 11 (2.6)
Diziness, n (%) 9 (11.0) 32 (9.3) 41 (9.6)
Romberg's test (positive result), n (%) 27 (32.9) 100 (29.1) 127 (29.8)
Left distal hypopallesthesia of medial malleolus, n (%) 4 (8.5) 42 (12.2) 46 (11.5)
Left distal hypopallesthesia of lateral malleolus, n (%) 12 (14.6) 42 (12.2) 54 (12.7)
Left distal hypopallesthesia of heel, n (%) 18 (22.0) 55 (16.0) 73 (17.1)
Left distal hypopallesthesia of foot arch, n (%) 10 (12.2) 40 (11.6) 50 (11.7)
Right distal hypopallesthesia of medial malleolus, n (%) 9 (11.0) 57 (16.6) 66 (15.5)
Right distal hypopallesthesia of lateral malleolus, n (%) 5 (6.1) 51 (14.8) 56 (13.1)
Right distal hypopallesthesia of heel, n (%) 17 (20.7) 61 (17.7) 78 (18.3)
Right distal hypopallesthesia of foot arch, n (%) 10 (12.2) 51 (14.8) 61 (14.3)
Left distal hypoesthesia of medial malleolus, n (%) 3 (3.7) 10 (2.9) 13 (3.1)
Left distal hypoesthesia of lateral malleolus, n (%) 3 (3.7) 8 (2.3) 11 (2.6)

(continued on next page)
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Table 1 (continued)

Fallers (n = 82) Non-fallers (n = 344) Total (n = 426)

Neurology
Sensory features
Left distal hypoesthesia of heel, n (%) 3 (3.7) 34 (9.9) 37 (8.7)
Left distal hypoesthesia of foot arch, n (%) 4 (4.9) 17 (4.9) 21 (4.9)
Right distal hypoesthesia of medial malleolus, n (%) 1 (1.2) 8 (2.3) 9 (2.1)
Right distal hypoesthesia of lateral malleolus, n (%) 1 (1.2) 9 (2.6) 10 (2.3)
Right distal hypoesthesia of heel, n (%) 3 (3.7) 33 (9.6) 36 (8.5)
Right distal hypoesthesia of foot arch, n (%) 3 (3.7) 20 (5.8) 23 (5.4)

Executive functions
Frontal assessment battery (Score/18 ± SD) 14.8 ± 2.3 14.6 ± 2.4 14.7 ± 2.4
Gear wheel test, (yes), n (%) 0 (0.0) 2 (0.6) 2 (0.5)
Repeat three words (“lemon, key, balloon”), (yes), n (%) 82 (100.0) 343 (99.7) 425 (99.8)
Spell the word “world” backwards, (yes), n (%) 76 (92.7) 328 (95.3) 404 (94.8)
Recall the three words (“lemon, key, balloon”) without aid

0 word, n (%) 1 (1.2) 3 (0.9) 4 (0.9)
1 word, n (%) 10 (12.2) 39 (11.3) 49 (11.5)
2 words, n (%) 25 (30.5) 87 (25.3) 112 (26.3)
3 words, n (%) 46 (56.1) 215 (62.5) 261 (61.3)
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presbycusis, and the variables related to quiet standing postural control,
both during eyes opened and eyes closed conditions, contributes
strongly to the decision tree (Fig. 1A–B). Finally, the disabilities at the
distal part of the lower limbs also represent an important part of the
tree. Indeed, in addition to the hypoesthesia at the ankle level, an overall
pathology at the foot level and/or a limited range of motion at the knee
level need to be diagnosed to complete the model.

The detailed prediction results of the training and test datasets are
presented in the form of confusion matrixes and ROC curves (Fig. 1C–
D). In the training set, the overall classification accuracy was 89%
(AUC = 0.89), with accuracy rate of 83% for fallers and 96% for non-
fallers. Further, for older adults classified by the decision tree as fallers,
Fig. 1. Decision tree architecture, which objectively shows the ‘If’-‘Then’ rules (A), the clusterin
both for the training set and the independent testing set through confusionmatrices (C) and rec
antero-posterior axis; M-L: mediolateral axis.
54 cases (95%) were actually fallers. For the 18 non-fallers in the test
dataset, the decision tree correctly classified 11 older adults (61%). The
prediction model accurately identified older adults at high risk for first
fall with an accuracy rate of 82% for the 17 fallers (AUC = 0.72 for both
curves).

4. Discussion

Considering theWHOrecommendations (WHO, 2007), the develop-
ment of long term targeted fall-prevention programs to prevent falls in
older adults as soon as possible is a health priority. Thus, the early iden-
tification of people at high risk of falls should be based on an “easy to use”
g of the selected parameters to enhance understanding (B) and the accuracy of the model
eiver operating characteristics (ROC) curves (D).Note. EC: eyes closed; EO: eyes open; A-P:
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predictive models built on a randomly selected training subset of the co-
hort and validated on an independent test set. These objectives guided
this pilot study conducted with a very original cohort (namely home-
dwelling older adults who had never fallen).We developed the first algo-
rithmusingmachine-learning technique leading to a set of simple rules to
estimate the probability of the risk of the first fall onset in the coming
year. As a striking result, we found a high classification accuracy of true
fallers in the training dataset (83%), which was consistently confirmed
by the decision tree analysis in the independent test set (82%).

The model extracted a restricted amount of relevant parameters,
which includes anthropometric, sensory-motor, and postural balance
parameters, from an initial set of 73 variables. These variables constitut-
ed a subset of the determinants already known to be associatedwith the
risk of falls in significant meta-analyses (Bloch et al., 2013; Gillespie
et al., 2012). Abnormal balance test [OddsRatio = 2.26 (1.79–2.85)],
low body mass index [OR = 2.05 (1.70–2.48)], fracture history [OR =
1.89 (1.53–2.34)], hearing impairment [OR = 1.37 (1.27–1.48)], vision
impairment [OR = 1.49 (1.39–1.59)], sensory disorders [OR = 2.2
(1.56–3.11)] or lower extremity disability [OR = 1.89 (1.65–2.17)] are
important intrinsic predictors of falls. They are consistent with the
parameters used by our algorithm, which include the mini nutritional
assessment score (/30 points) (Rubenstein et al., 2001), body mass
index, lean body mass, clinical balance measures (the surface and the
path length of the COP during quiet stance trials with eyes open or
eyes closed), presbycusis or visual acuity impairment, and shank/ft
disabilities (ankle hypoesthesia, limited knee range of motion or foot
pathology such as hallux valgus). Overall to be an older adult, with
nutritional disturbances, limited knee range of motion or ankle
hypoesthesia, and hearing and visual deficits tend to impair the postur-
al, indicative of an increased risk of the first fall. Other things being
equal, thismight be the first insights in pathophysiological mechanisms
underlying the phenotype of fallers.

The clustering of these parameters in four families (Fig. 1B) illustrates
the importance of considering simultaneously the fields of nutrition/body
composition, the sensory-motor features at the lower limb level, and the
control of postural balance for an optimized integrative prevention strat-
egy. Indeed, both themorphological states (i.e., overweight and restricted
joint range ofmotion), themuscle strength at the ankle joint, and the feet
sensitivity strongly influence the postural control skills and in fine the risk
of fall. (Cattagni et al., 2014; Mignardot et al., 2013; Perry, 2006)

One of key aspects of this pilot regression tree analysis is the simple
conversion of main findings into a collection of ‘If’-‘Then’ rules easily
useable in clinical setting (Fig. 1A). Beyond the high classification accu-
racy of the current predictionmodel of the first fall, further analyses are
needed to increase the visibility of these rules because of limited sample
size associated with those nodes. Thus further statistic validity of the
current prediction model on a larger and truly independent cohort
is still required to guarantee the clinical relevance of the current
prediction model. One of the key results is indeed relatively moderate
accuracy rate for non-fallers in the test set (61%) compared to the accu-
racy rate of 96% in the training dataset. The possibility that this drop is a
sign of impaired robustness of the model needs to be considered as a
limitation of the present study. However, we assume that the accuracy
of this prediction model for future fallersmay help medical professional
prescribe an intervention early enough to effectively prevent the first
fall onset. From a clinical viewpoint, although this new guide reliably
identifies older adults at high risk for fall, diagnosing older individuals
who are really not at risk as being at high risk is much less dramatic.

To conclude, using few routine clinical, anthropometric, and
metrologic measurements, this pilot study tested a reliable prognostic
model to predict the first fall onset in older adults. The model may offer
a simple and easy tool to use in the clinical settings and medical field.”

Conflict of interest

The authors report no conflicts of interest.
Author contribution

Conception and design of the cohort study: GB.
Collection, assembly, analysis and interpretation of data: CLG, JBM, TD.
Drafting the article or revising it critically for important intellectual

content: TD, CLG, JBM, CC, GB.

Sponsor's role

The study was sponsored by grants from the Region of Pays de la
Loire (#2011-05457 & #2011-05455), France, for the projects “RP3AP”
and “LMA”. The sponsors had no role in the design and conduct of the
study, in the collection, management, analysis, and interpretation of
the data, or in the preparation, review, or approval of the manuscript.

References

Beauchet, O., Allali, G., Annweiler, C., et al., 2008. Does change in gait while counting back-
ward predict the occurrence of a first fall in older adults? Gerontology 54, 217–223.

Bloch, F., Thibaud, M., Tournoux-Facon, C., et al., 2013. Estimation of the risk factors for
falls in the elderly: can meta-analysis provide a valid answer? Geriatr. Gerontol. Int.
13, 250–263.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and Regression
Trees. Wadsworth, Belmont, California.

Cattagni, T., Scaglioni, G., Laroche, D., et al., 2014. Ankle muscle strength discriminates
fallers from non-fallers. Front. Aging Neurosci. 6, 336.

Dai, B., Ware, W.B., Giuliani, C.A., 2012. A structural equation model relating physical
function, pain, impaired mobility (IM), and falls in older adults. Arch. Gerontol.
Geriatr. 55, 645–652.

Davis, J.C., Robertson, M.C., Ashe, M.C., et al., 2010. International comparison of cost of falls in
older adults living in the community: a systematic review. Osteoporos. Int. 21,
1295–1306.

Davis, J.C., Bryan, S., Best, J.R., et al., 2015. Mobility predicts change in older adults' health-
related quality of life: evidence from a Vancouver falls prevention prospective cohort
study. Health Qual. Life Outcomes 13, 101.

Gillespie, L.D., Robertson, M.C., Gillespie,W.J., et al., 2012. Interventions for preventing falls in
older people living in the community. Cochrane Database Syst. Rev. 9, CD007146.

Ivziku, D., Matarese, M., Pedone, C., 2011. Predictive validity of the Hendrich fall risk
model II in an acute geriatric unit. Int. J. Nurs. Stud. 48, 468–474.

Kojima, G., Masud, T., Kendrick, D., et al., 2015. Does the timed up and go test predict
future falls among British community-dwelling older people? Prospective cohort
study nested within a randomised controlled trial. BMC Geriatr. 3 (15), 38.

Kotsiantis, S.B., 2007. Supervised machine learning: a review of classification techniques.
Informatica 31, 249–268.

Mignardot, J.B., Olivier, I., Promayon, E., et al., 2013. Origins of balance disorders during a
daily living movement in obese: can biomechanical factors explain everything? PLoS
One 8, e60491.

Mignardot, J.-B., Deschamps, T., Barrey, E., et al., 2014. Gait disturbances as specific
predictive markers of the first fall onset in elderly people: a two-year prospective
observational study. Front. Aging Neurosci. 6, 22.

Perry, S.D., 2006. Evaluation of age-related plantar-surface insensitivity and onset age of
advanced insensitivity in older adults using vibratory and touch sensation tests.
Neurosci. Lett. 392, 62–67.

Raileanu, L.E., Stoffel, K., 2004. Theoretical comparison between the Gini index and
information gain criteria. Ann. Math. Artif. Intell. 41, 77–93.

Rubenstein, L.Z., Harker, J.O., Salvà, A., et al., 2001. Screening for undernutrition in geriatric
practice: developing the short-form mini-nutritional assessment (MNA-SF).
J. Gerontol. A Biol. Sci. Med. Sci. 56, M366–M372.

Schoene, D., Wu, S.M., Mikolaizak, A.S., et al., 2013. Discriminative ability and predictive
validity of the timed up and go test in identifying older people who fall: systematic
review and meta-analysis. J. Am. Geriatr. Soc. 61, 202–208.

Stalenhoef, P.A., Diederiks, J.P.M., Knottnerus, J.A., et al., 2002. A risk model for the predic-
tion of recurrent falls in community-dwelling elderly: a prospective cohort study.
J. Clin. Epidemiol. 55, 1088–1094.

Tinetti, M., Speechley, M., Ginter, S.F., 1988. Risk factors for falls among elderly persons
living in the community. N. Engl. J. Med. 319, 1701–1707.

Verghese, J., Holtzer, R., Lipton, R.B., et al., 2009. Quantitative gaitmarkers and incident fall
risk in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 64, 896–901.

Whitney, J., Close, J.C.T., Lord, S.R., et al., 2012. Identification of high risk fallers among
older people living in residential care facilities: a simple screen based on easily
collectable measures. Arch. Gerontol. Geriatr. 55, 690–695.

WHO, 2007.World Health Organization report/WHO Global Report on Falls Prevention in
Older Age (47 pp.).

Yoo, S.H., Kim, S.R., Shin, Y.S., 2015. A prediction model of falls for patients with neurolog-
ical disorder in acute care hospital. J. Neurol. Sci. 356, 113–117.

http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0005
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0005
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0010
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0010
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0010
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0015
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0015
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0020
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0020
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0025
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0025
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0025
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0030
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0030
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0030
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0035
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0035
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0035
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0040
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0040
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0045
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0045
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0050
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0050
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0050
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0055
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0055
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0060
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0060
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0060
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0065
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0065
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0065
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0070
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0070
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0070
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0075
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0075
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0080
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0080
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0080
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0085
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0085
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0085
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0090
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0090
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0090
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0095
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0095
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0100
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0100
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0105
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0105
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0105
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0110
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0110
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0115
http://refhub.elsevier.com/S0531-5565(16)30112-7/rf0115

	A decision model to predict the risk of the first fall onset
	1. Introduction
	2. Methods
	2.1. Participants
	2.2. Screening of falls and prospective follow-up
	2.3. Data collection
	2.4. Decision tree learning procedure
	2.4.1. Random attribution of the data for the training or testing sets
	2.4.2. Model accuracy assessment


	3. Results
	4. Discussion
	Conflict of interest
	Author contribution
	Sponsor's role

	References


